INTRODUCTION

Parasitic invasion is a medical and biological notion that defines the totality of the processes that occur during an infectious process — the interaction of the pathogen and the host organism, when the causative agents are parasites. In epidemiology and parasitology, invasion refers to the fact that parasites have entered the host organism, that is, infection, as a rule, with parasitic fungi, protozoa, parasitic worms or diseases caused by parasitic pathogens: fungal invasions, protozoan invasions [1].

It is known that several dozen of the protozoan microorganisms can live in the human body. Morphologically, they can be very similar to \textit{Trichomonas vaginalis} [2]. For example, a person can be a carrier of three types of \textit{Trichomonas}: \textit{Trichomonas tenax} (elongata), \textit{Pentatrichomonas hominis} and \textit{Giardia lamblia}. For systematic review of papers the EMBASE and PubMed databases were searched. We also reviewed our own pilot studies using real-time polymerase chain reaction (PCR) to determine \textit{Trichomonas tenax}, \textit{Pentatrichomonas hominis} and \textit{Giardia lamblia}. The aim was to perform systematic review of genitourinary protozoan invasion and analyze their pathogenicity and the ability to influence the genitourinary infections.

Materials and methods: For systematic review of papers the EMBASE and PubMed databases were searched. We also reviewed our own pilot studies using real-time polymerase chain reaction (PCR) to determine \textit{Trichomonas tenax}, \textit{Pentatrichomonas hominis} and \textit{Giardia lamblia}. For systematic review of papers the EMBASE and PubMed databases were searched. We also reviewed our own pilot studies using real-time polymerase chain reaction (PCR) to determine \textit{Trichomonas tenax}, \textit{Pentatrichomonas hominis} and \textit{Giardia lamblia}. The aim was to perform systematic review of genitourinary protozoan invasion and analyze their pathogenicity and the ability to influence the genitourinary infections.

Conclusion: \textit{Trichomonas tenax}, \textit{Pentatrichomonas hominis}, \textit{Giardia lamblia} can cause genitourinary invasion in addition to \textit{Trichomonas vaginalis}. Their eradication is obligatory at least for not keeping intact pathogenic microorganisms phagocyted by \textit{Trichomonas spp}. Defining the protozoan forms is important in preventing of genitonal infections recurrences and reinfections.

KEY WORDS: \textit{Trichomonas vaginalis}, \textit{Trichomonas tenax}, \textit{Pentatrichomonas hominis}, \textit{Giardia lamblia}
It can be assumed that *Giardia lamblia* is highly prevalent in the genitourinary system of patients who suffer from STIs. We can also assume that Trichomonas (*Trichomonas tenax, Pentatrichomonas hominis*), which (as thought until recently) are non-pathogenic for the urogenital tract, could also experience a certain pathomorphosis and acquire the ability to colonize the genitourinary system. It is likely that such properties could occur when these pathogens enter the genitourinary system during unprotected oral and anal sex, respectively, which are very common in modern sexual relationships.

THE AIM

The aim was to perform systematic review of genitourinary protozoan invasions, analyze their pathogenicity and the ability to influence the genitourinary infections.

MATERIALS AND METHODS

For systematic review of papers the EMBASE and PubMed databases were searched with date ranges between 2004 and 2019. Search words included: genital invasions, Trichomonas vaginalis, Trichomonas tenax, Pentatrichomonas hominis, Giardia lamblia, sexually transmitted infections, and infestations. We also reviewed our own pilot studies using experimental original primers that were designed specifically to determine *Trichomonas tenax, Pentatrichomonas hominis* and *Giardia lamblia* using modern modification of the PCR — Real-Time PCR.

REVIEW AND DISCUSSION

These studies in various groups of patients with STIs showed a wide prevalence of protozoan invasions of the genitourinary system caused by *Trichomonas tenax, Pentatrichomonas hominis* and *Giardia lamblia* [17]. Thus, for example, protozoan invasions in the genitourinary system were found in 71 (44.9 ± 3.4 %) of 158 examined patients with an STI chronicity. The study group consisted of 45 men (63.4 %) and 26 women (36.6 %). *Trichomonas tenax* was diagnosed in 13 patients (18.3%): 10 men (22.2 % of all men) and 3 women (11.5 % of all women). *Pentatrichomonas hominis* was diagnosed in 48 patients (67.6 %): 29 men (64.4 % of all men) and 19 women (73.1 % of all women). *Trichomonas vaginalis* — in 1 patient, female (3.8 %). *Giardia lamblia* was diagnosed in 9 patients (12.7 %): 6 men (13.3 %) and 3 women (11.5 %). There were not significant gender differences in the frequency of protozoan invasions of the genitourinary system. The fact that each patient of the experimental group has just a chronic inflammatory process in the genitourinary system allows us to suggest that these microorganisms are potential factors for the occurrence and / or course of urinary infections. It was found that the level of diagnosis of *Trichomonas vaginalis* in patients with urogenital infections was only about 4 %. In addition, it was proved that during the detection of Trichomonas using the method of sowing on the appropriate nutrient medium, *Trichomonas tenax* is often perceived as *Trichomonas vaginalis* or *Pentatrichomonas hominis* [18].

Therefore, the possibility of stay in the urinary system three different types of Trichomonas (*Trichomonas vaginalis, Trichomonas tenax, Pentatrichomonas hominis*) and *Giardia lamblia* has been established. Answering the question “why the protozoa should be eradicated from genitourinary system?” first of all, the direct damaging effects of *Trichomonas vaginalis* and *Giardia lamblia* should be noted [19]. It should be noted separately that the pathogenicity of *Trichomonas vaginalis* to humans is not limited to inflammation. It has various manifestations, in particular, the role of this pathogen in the formation of pathogenic microbiocenes, including bacterial vaginosis in women, decreased immunity [20, 21, 22]. In these circumstance the development of hyperplastic processes in the organs of the human genitourinary system, and perinatal pathology may not be excluded [23, 24]. *Trichomonas vaginalis* can live not only in genitourinary organs but even in the bloodstream, where they penetrate through the intercellular space and lymphatic pathways using the hyaluronidase enzyme [25]. Observations of other extragenital lesions caused by Trichomonas, in particular, of the tonsils, skin and rectum, were also described [19].

Nowadays, Trichomoniasis is considered a mixed protozoan and bacterial infection [20]. When examining patients, it is necessary to take into account that all *Trichomonads* have phagocytic properties, often with incomplete digestion (incomplete phagocytosis). In the case of incomplete phagocytosis of cocci, diplococci, chlamydia, bacillary forms, viruses appearing at the death of Trichomonas, and are able to support the inflammatory process in the urinary tract, is often perceived as untreated Trichomoniasis or post-trichomonal lesions, creates certain difficulties in prescribing etiotropic treatment [25, 26]. Therefore, information about such a pathogenetic link helps to properly plan clinical, diagnostic, and preventive measures.

A local study of the incidence of STIs in Ukraine showed that in 64.29 % of patients with UT, *Trichomonas vaginalis* was found in pathological associations with other sexually transmitted pathogens. The most clinically significant for the genitourinary system of patients are the pathological microbial associations of *Trichomonas vaginalis* with *Human papillomavirus* (14.28 %), as well as simultaneously with *Chlamydia trachomatis* and *Mycoplasma hominis* (14.28 %). Moreover, entering into the composition of various microbial associations, *Human papillomavirus, Ureaplasma urealyticum,* and *Chlamydia trachomatis* were each defined in 7 (25 %), and *Mycoplasma hominis* in 10 (35.7 %) patients with UT. Therefore, research on these microorganisms in our region today is most appropriate when conducting diagnostic examinations of patients with UT [26]. There is evidence of the occurrence of pathological microbial associations (MA), which include *Trichomonas vaginalis* and microflora, which is associated with bacterial vaginosis (BV). MAs are interacting microbial communities. MA may include bacteria, yeast, fungi, and other microorganisms. They are based on symbiotic or metabiotic relationships. Certain types of microorganisms that make up MA are usually resistant to
waste products of other species and use these products as sources of their existence [3]. Our researches have shown that microorganisms associated with BV are often found in the genitourinary system of patients with Trichomonas tenax and Pentatrichomonas hominis, as well as Giardia lamblia. Moreover, the group of Gardinerella vaginalis / Prevotella bivia / Porphyromonas spp. microorganisms is determined in more than 60% of relevant patients with Trichomonas tenax. Enterobacteriaceae is diagnosed in almost 11–23% of patients. The group of Mobiluncus spp. / Corynebacterium spp. microorganisms was diagnosed in 23–33%. Candida spp. is diagnosed more often, in almost 70% of patients with these pathogens. Eubacterium spp. was found in over 54% of patients. As for conditionally pathogenic genital mycoplasmas (Ureaplasma urealyticum + parvum), they are more often associated with the simplest causative agents of Giardiasis — Giardia lamblia — in almost 45% of cases [27].

From the practical point of view, for the treatment of combined lesions of the genitourinary system caused by various types of trichomonads and microorganisms associated with BV, for patients with an STI chronicity, as etiotropic therapy means, it is advisable to use sequentially secnidazole 2,0 g once a day for 5 days and a preparation containing 0.5 g of metronidazole and 0.5 g of ornidazole, 1 tablet 3 times a day for weight over 70 kg and 2 times a day for weight less than 70 kg for 10 days [28]. In addition, during the eradication of protozoan pathogens, it is desirable to take into account the state of the immune system of the respective patients [22]. Thus, when treating protozoan invasions against the background of primary immunodeficiency in order to correct it, it is advisable to use the drug called "Propes", which is a derivative of the defensin group [29].

CONCLUSIONS

Trichomonas tenax, Pentatrichomonas hominis, Giardia lamblia can cause genitourinary invasion in addition to Trichomonas vaginalis. Their eradication is obligatory at least for not keeping intact pathogenic microorganisms phagocyted by Trichomonas spp. Defining the protozoan forms is important in preventing of genital infections recurrences and reinfections.

REFERENCES

8. Fedorych PV, Zelenyi S.B., Zaitseva L.S. on insh. Vyznachennia deiatykh microorganisms associated with BV, for patients with an STI chronicity, as etiotropic therapy means, it is advisable to use the drug called "Propes", which is a derivative of the defensin group [29].

Academic research work topic 00116U003595 State Establishment “Institute of Dermatology and Venerology of the National Academy of Medical Sciences of Ukraine” “To optimize the system for laboratory diagnosis of syphilis and trichomoniasis for different levels of medical care to the population in conditions of social instability and emergency situations”, in the framework of state funding.

ORCID and contributionship:
Pavlo V. Fedorych – 0000-0001-8273-0821 A, B, D, F
Gennadiy I. Mavrov – 0000-0002-3645-2792 A, C, E, F
Tetiana V. Osinska – 0000-0002-2683-4957 B, C, D
Yuliia V. Shcherbakova – 0000-0002-3682-7451 B, E, F

Conflicts of interest:
Authors declare no conflict of interest.

CORRESPONDING AUTHOR
Pavlo V. Fedorych
Ukrainian Military Medical Academy
45/1 General Almazov str., 01015, Kyiv, Ukraine
tel: +380672204552
e-mail: pvf9@meta.ua

Received: 09.05.2019
Accepted: 16.12.2019

A – Work concept and design, B – Data collection and analysis, C – Responsibility for statistical analysis, D – Writing the article, E – Critical review, F – Final approval of the article